APPROVAL REPORT FOR THE PATTERN AND CONSTRUCTION OF ELECTRICITY METERS ANNEX II, MODULE B MEASURING INSTRUMENT DIRECTIVE MANUFACTURER: Jiangsu Acrel Electrical Manufacturing. Co., Ltd. TYPE : ADL200 CLASS : A or B (kWh) DESCRIPTION : Single Phase, Active Import/Export (kWh), Electricity Meter Tested in accordance with EN 50470-1: 2006, Electricity metering equipment (AC) Part 1: General requirements, tests and test conditions. Metering equipment (class indexes A, B and C) and EN 50470-3: 2006, Electricity metering equipment (AC) Part 3: Particular requirements - Static meters for active energy (class indexes A, B and C) The meters tested satisfied the required specification. ISSUED BY: CHECKED BY: Mason Gu K.Hunter Test Engineer REPORT ISSUE DATE: 22nd July 2021 **REPORT ISSUE NUMBER: 1** "This document is issued by the Company subject to its General Conditions of Service available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at www.sgs.com/terms_e-document.htm. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law." #### **CONTENTS** Page Number INTRODUCTION4 INFORMATION ON THE ELECTRICITY METERS TESTED......5 SUPPORTING DOCUMENTATION6 SUMMARY OF TEST RESULTS......7 EN50470-1 GENERAL REQUIREMENTS: SOFTWARE REVIEW......10 1 1.1 AC Voltage Test 12 1.2 2 Meter Constant 15 22 2.3 Influence of Ambient Temperature 18 2.4 2.5 2.6 Composite Error 23 2.7 VARIATION OF ERROR DUE TO DISTURBANCES OF LONG DURATION.....29 3 Severe Voltage Variation 29 3 1 Short-time Over Current 30 3.2 3.3 Influence of Self Heating 31 3.4 3.5 3.6 4 4.1 Power Consumption 35 4.2 Test of Influence of Heating 36 5 5.1 5.2 5.3 Immunity to Conducted Disturbances 43 5.5 | | 5.7 | Radio Interference Measurement | 45 | |---|------------|--|----| | | 5.8 | Magnetic Induction of External origin 0.5mT | 51 | | | 5.9 | Continuous Magnetic Induction of External Origin | 52 | | 6 | CLIN | MATIC INFLUENCES | 53 | | | 6.1 | Dry Heat Test | 53 | | | 6.2 | Cold Test | 54 | | | 6.3 | Damp Heat Cyclic Test | 55 | | 7 | MEC | CHANICAL REQUIREMENTS | 56 | | | 7.1 | Vibration Test | 56 | | | 7.2 | Shock Test | 57 | | | 7.3 | Spring Hammer Test | 58 | | | | | | | | 7.4 | Penetration of Dust & Water | 59 | | | 7.4
7.5 | Penetration of Dust & Water Resistance to Heat & Fire | | #### INTRODUCTION The type tests described were carried out in SCM and SGS Shanghai laboratory on behalf of: CLIENT DETAILS: Jiangsu Acrel Electrical Manufacturing. Co., Ltd. No.5, Dongmeng Road, Nanzha Street, Jiangyin City, Jiangsu Province, China ORDER No: SH-202102040279 APPLICATION RECEIVED DATE: March 4th 2021 DATE OF RECEIPT OF SAMPLES: March 24th 2021 DATE OF TESTS: March 25th 2021 to May 24th 2021 Conditions under which the type tests took place: Unless otherwise stated, the meters were examined at an ambient temperature of $23^{\circ}\text{C} \pm 2^{\circ}\text{C}$, and after the voltage circuits had been connected to reference voltage for at least 1 hour. Unless otherwise stated, Polyphase tests were tested with a standard phase sequence of L1-L2-L3 (corresponding to the Red, Yellow & Blue phases). The tests were conducted using equipment, traceable to National and International Standards. #### INFORMATION ON THE ELECTRICITY METERS TESTED Manufacturer : Jiangsu Acrel Electrical Manufacturing. Co., Ltd. Type : ADL200 Class : A or B (kWh) Temperature Range : -25°C to +55°C Type of circuit : 1 phase 2 wire Imin : 0.5A Itr : 1A In : 10A Imax : 80A Reference Supply Voltage : 230V Rated Frequency : 50Hz Pulse output constant : 1000p/kWh Manufacturers Serial No. : 11809192840053, 11809192840057, 11809192840047, 11809192840054, M7 # SUPPORTING DOCUMENTATION Accredited Laboratory tests reports: Clause 5.4 Terminal block requirements SGS. Report No. SHIN2107046133MR Issued: 9th July 2021 # SUMMARY OF TEST RESULTS | | Requir | ements | | | | |--|--------------------------------|-------------------------------|---|----------|--| | Test Description | General
EN50470-1
Clause | Static
EN50470-3
Clause | Performed | Result | | | Tests of insulation properties | | | | | | | Impulse voltage | 7.3.3 | | SGS Shanghai | Complied | | | AC voltage | 7.3.4 | 7.2 | SGS Shanghai | Complied | | | Tests of accuracy requirements | | | | | | | Accuracy at reference conditions | | 8.7.2 | SGS Shanghai | Complied | | | Repeatability | | 8.7.4 | SGS Shanghai | Complied | | | Meter constant | | 8.7.10 | SGS Shanghai | Complied | | | Starting condition | | 8.7.9.2 | SCM | Complied | | | No-load condition | | 8.7.9.3 | SGS Shanghai | Complied | | | Effect of influence quantities | | 8.7.5 | SGS Shanghai | Complied | | | Tests of effect of disturbances of long duration | | | | | | | Severe voltage condition | | 8.7.7.2 | SGS Shanghai | Complied | | | Reverse phase sequence | | 8.7.7.3 | N/A | N/A | | | Voltage unbalance | | 8.7.7.4 | N/A | N/A | | | Short time overcurrents | | 8.7.8 | SCM | Complied | | | Self-heating | | 8.7.7.5 | SGS Shanghai | Complied | | | Accuracy in the presence of harmonics | | 8.7.7.7 | SCM | Complied | | | Odd harmonics and sub-harmonics | | 8.7.7.9 | SCM | Complied | | | DC and even harmonics | | 8.7.7.8 | SCM | Complied | | | Operation of auxiliary devices | | 8.7.7.13 | N/A | N/A | | | Tests of electrical requirements | | | | | | | Power consumption | | 7.1 | SGS Shanghai | Complied | | | Heating | 7.2 | | SGS Shanghai | Complied | | | Tests for electromagnetic compatibility | | | | | | | Immunity to voltage dips and short interrupts | 7.4.4 | | SCM | Complied | | | Radio interference suppression | 7.4.13 | | SCM | Complied | | | Immunity to fast transients | 7.4.7 | 8.7.7.14 | SCM | Complied | | | Immunity to oscillatory waves | 7.4.10 | 8.7.7.16 | N/A | N/A | | | Immunity to radiated RF electromagnetic fields | 7.4.6 | 8.7.7.12 | SCM | Complied | | | Immunity to conducted RF disturbances | 7.4.8 | 8.7.7.15 | SCM | Complied | | | Immunity to electrostatic discharges | 7.4.5 | | SCM | Complied | | | Immunity to surges | 7.4.9 | | SCM | Complied | | | Immunity to AC magnetic fields | 7.4.12 | 8.7.7.11 | SCM | Complied | | | Immunity to continuous magnetic fields | 7.4.11 | 8.7.7.10 | SCM | Complied | | | Tests of the effect of climatic environments | | | | | | | Dry heat test (Test B) | 6.3.2 | | SGS Shanghai | Complied | | | Cold test (Test A) | 6.3.3 | | SGS Shanghai | Complied | | | Damp heat cyclic test (Test Db) | 6.3.4 | | SGS Shanghai | Complied | | | Solar Radiation (Test Sa) | 6.3.5 | | N/A | N/A | | | Mechanical tests | | | | | | | Vibration test (Test Fc) | 5.2.2.3 | | SGS Shanghai | Complied | | | Shock test (Test Ea) | 5.2.2.2 | | SGS Shanghai | Complied | | | Spring hammer test (Test Eh) | 5.2.2.1 | | SGS Shanghai | Complied | | | Protection against penetration of dust and water | 5.9 | | SGS Shanghai | Complied | | | | | | _ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ | p | | #### **SUMMARY OF TEST RESULTS (cont.)** Tests performed at SCM and SGS Shanghai South China National Centre of Metrology (SCM) The SCM laboratory is accredited by CNAS (Lab ID: L0730) CNAS is recognised by the IAF as the accreditation body for China. SGS-CSTC Standards Technical Service (Shanghai) Co., Ltd. Testing Center (SGS-Shanghai) The SGS-Shanghai laboratory is accredited by CNAS (Lab ID: L0599) CNAS is recognised by the IAF as the accreditation body for China. Record No.: 2105131425 # **EN50470-1 GENERAL REQUIREMENTS:** | Clause | Requirements | Complied | |--------|--|----------| | 4.1 | Standard reference voltages | Yes | | 4.2 | Standard current & current ranges | Yes | | 4.3 | Standard reference frequency | Yes | | 5.1 | The manufacturer shall specify the mechanical environment the meter is intended for. | Yes | | | Meters shall be designed & constructed in such a way to avoid danger in normal use and conditions to avoid: - electric shock - excessive temperature - fire - penetration of solid objects, dust and water | Yes | | 5.2.1 | Case can be sealed or closed in a way that protects internal parts and cannot be accessed without breaking a seal or the case | Yes | | 5.3 | The window shall be transparent | Yes | | 5.4 | Terminal requirements | Yes | | | The terminal block material is capable of passing the tests given in EN ISO 75-2 | Yes | | 5.5 | The terminals shall have a separate cover which can be sealed independently of the meter cover | Yes | | 5.6 | Clearance and creepage requirements | Yes | | 5.7 | Insulating encased meter of protective class II requirements | Yes | | 5.10 | Register readable under normal conditions and the principal unit is kWh | Yes | | | Non-volatile memory has a minimum retention time of 4 months | Yes | | | In the case of multiple values displayed
by a single display, it shall be possible to display the contents of all relevant memories. Automatic sequencing displays shall display each value for at least 5 seconds | Yes | | | The register shall be able to record and display, starting from zero, for a minimum of 4000hrs, the energy corresponding to maximum current at reference voltage and unity power factor | Yes | | | The display of the total energy supplied shall not be able to reset during use | Yes | | 5.11 | The meter has a test output capable of being monitored for test purposes | Yes | | 5.11.1 | The maximum pulse frequency of the optical test output shall be $\leq 2.5 kHz$ and the pulse transition time shall be $\leq 20 \mu s$ | Yes | | 5.11.2 | The wavelength of the radiated signals for emitting systems is between 550nm and 1000nm | Yes | | 5.12.1 | The meter bears the required information on the name plate | Yes | | 5.12.2 | The meter has the connection diagram marked | Yes | | 5.13 | An instruction manual for each meter type is made available | Yes | #### **RELIABILITY & DURABILITY** EN50470-3 X-Ref. 9.0 & 10.0 An assessment was made using the failure rates of components in accordance with the SIEMENS NORM SN 29500 Edition 2009-06. These values were then applied to a spreadsheet (OfgemModelv4.3.xls) in accordance with our guidance notes (Model Guidelines v1.4.doc) and given an overall predicted life, in years. As part of the type approval process, SGS carried out the assessment to verify that the submitted reliability model accurately reflects the physical sample supplied in order to ascertain an accurate predicted life. Supporting documentation has been provided and found to be satisfactory where components that are not covered by the SN 29500 (LCD's, Batteries, and Contactors etc.) have been used and any subsequent arguments have been resolved. The Electronic Metering Reliability Model predicts that this meter has a life of 15.31Years with reference to Reliability Report EMA291455/1/Reliability dated 16th June 2021 Where this relates to a family of meters, the reliability model was performed on the most component populated meter variant, so as to simulate the worst case scenario, and all other meter variants will be at least similar. #### **SOFTWARE REVIEW** EN50470-3 X-Ref. 11.0 A review was carried out in accordance with the Welmec 7.2 2015 Software Guide (Measuring Instruments Directive 2014/32/EU) The meter was stated to be Type P (Basic requirements for Embedded Software in a Built-for-purpose Measuring Instrument) and under Risk Class C. The meter was also considered for:- Extension L - Specific software requirements for Long-term storage Extension T - Specific software requirements for Data transmission Extension D - Download of legally relevant software Extension I-3 - Specific software requirements (Active electrical energy meters) The review was performed on software version V1.01 Documentation provided by the manufacturer satisfied the requirement of the Welmec software guide. #### 1 INSULATION EN50470-1 X-Ref. 7.3 #### 1.1 Impulse Voltage Test X-Ref. 7.3.3 Sample No:M7 Test Procedure: EN50470-1 Impulse Voltage #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | Impulse specification: Test level 6kV @ 0.5J open circuit Time between impulse's 3s The meter samples were placed on a flat conducting earth surface with the case wrapped in a conductive foil. The test voltage was applied 10 times in each polarity between the points listed below:- - 1) With one terminal of the voltage circuit connect to earth, the impulse voltage was applied between the common voltage/current meter terminal and earth. - 2) With all meter terminals connected together, impulse voltage was applied between the meter terminals and earth. During the tests auxiliary circuits with reference rated voltage ≤ 40V were connected to earth. On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties. ### 1.2 AC Voltage Test EN50470-1 X-Ref. 7.3.4 EN50470-3 X-Ref. 7.2 Sample No: M7 Test Procedure: EN50470-3 AC Voltage #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | Test level 2kV & 4kV Test duration 1 minute. The a.c. voltage tests were conducted as follows: - 1) Between all meter voltage and current circuits connected together, and earth. - 2) Between all circuits not intended to be connected together in service, and earth. The earth consisting of a conductive foil wrapped around the meter and connected to a flat conducting earth surface, upon which the meter was placed. During the tests auxiliary circuits with reference rated voltage ≤ 40V were connected to earth. On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties. # 2 ACCURACY AT REFERENCE CONDITIONS EN50470-3 X-Ref. 8 #### 2.1 Variation in Current X-Ref. 8.7.2 Sample No: M7 Test Procedure: EN50470-3 Acc 1P2W kWh +P Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | | | | L | imit of % Err | or | | |----------------|-----------|---------|----------|---------------|---------|--| | CURRENT | PF Cos. ø | % Error | Accuracy | | | | | | | | Class A | Class B | Class C | | | Imin | 1.0 | 0.0579 | ±2.5 | ±1.5 | ±1.0 | | | Itr | - | 0.0927 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | - | 0.0868 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | 0.0590 | ±2.0 | ±1.0 | ±0.5 | | | Imax | - | 0.0208 | ±2.0 | ±1.0 | ±0.5 | | | | | | | | | | | Itr | 0.5ind | 0.2359 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | - | 0.2340 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | 0.1843 | ±2.0 | ±1.0 | ±0.5 | | | Imax | - | 0.0973 | ±2.0 | ±1.0 | ±0.5 | | | | | | | | | | | Itr | 0.8cap | 0.0215 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | | 0.0208 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | -0.0069 | ±2.0 | ±1.0 | ±0.5 | | | Imax | - | -0.0624 | ±2.0 | ±1.0 | ±0.5 | | **Repeatability** EN50470-3 X-Ref 8.2 | | | <i>R1</i> | R2 | R3 | Limit o | f % Error Va | ariation | |----------------|-----------|-----------|----------|----------|---------|--------------|----------| | CURRENT | PF Cos. φ | % Error | % Error | % Error | | Accuracy | | | | , | Variance | Variance | Variance | | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.03 | 0.03 | 0.03 | ±0.25 | ±0.15 | ±0.10 | | Itr | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 0.5Imax | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | Imax | - | -0.01 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | | | | | | | | | | Itr | 0.5ind | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 0.5Imax | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | Imax | - | -0.01 | 0.00 | 0.01 | ±0.20 | ± 0.10 | ±0.05 | | | | | | | | | | | Itr | 0.8cap | 0.00 | 0.00 | 0.01 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 | ±0.20 | ±0.10 | ±0.05 | | 0.5Imax | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | Imax | = | 0.00 | 0.00 | -0.01 | ±0.20 | ±0.10 | ±0.05 | # Variation in Current(cont.) X-Ref. 8.7.2 Sample No: M7 Test Procedure: EN50470-3 Acc 1P2W kWh -P Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Export Energy kWh | | | | Limit of % Error | | | | |----------------|-----------|---------|-------------------------|------|------|--| | CURRENT | PF Cos. φ | % Error | Accuracy | | | | | | | | Class A Class B Class C | | | | | Imin | 1.0 | 0.1021 | ±2.5 | ±1.5 | ±1.0 | | | Itr | - | 0.1028 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | - | 0.1138 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | 0.1321 | ± 2.0 | ±1.0 | ±0.5 | | | Imax | - | 0.1530 | ±2.0 | ±1.0 | ±0.5 | | | | | | | | | | | Itr | 0.5ind | 0.2590 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | - | 0.2802 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | 0.3239 | ± 2.0 | ±1.0 | ±0.5 | | | Imax | - | 0.3414 | ±2.0 | ±1.0 | ±0.5 | | | | | | | | | | | Itr | 0.8cap | 0.0339 | ±2.0 | ±1.0 | ±0.5 | | | 10Itr(Iref/In) | - | 0.0442 | ±2.0 | ±1.0 | ±0.5 | | | 0.5Imax | - | 0.0694 | ±2.0 | ±1.0 | ±0.5 | | | Imax | - | 0.0973 | ±2.0 | ±1.0 | ±0.5 | | **Repeatability** EN50470-3 X-Ref 8.2 | | Repeatability ENSOTIOS IN NOT 0.2 | | | | | | | |----------------|-----------------------------------|----------|----------|----------|------------|---------------|------------| | | | R1 | R2 | R3 | Limit o | of % Error Va | ariation | | CURRENT | PF Cos. φ | % Error | % Error | % Error | | Accuracy | | | | | Variance | Variance | Variance | | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.00 | -0.02 | 0.00 | ± 0.25 | ±0.15 | ±0.10 | | Itr | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 0.5Imax | - | 0.00 | 0.00 | -0.01 | ±0.20 | ± 0.10 | ±0.05 | | Imax | - | -0.01 | -0.01 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | | | | | | | | | | Itr | 0.5ind | -0.01 | 0.00 | 0.01 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 | ± 0.20 | ± 0.10 | ±0.05 | | 0.5Imax | - | 0.00 | 0.00 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | Imax | - | 0.01 | 0.01 | 0.01 | ± 0.20 | ± 0.10 | ± 0.05 | | | | | | | | | | | Itr | 0.8cap | -0.01 | -0.01 | 0.00 | ±0.20 | ± 0.10 | ±0.05 | | 10Itr(Iref/In) | - | 0.00 | 0.00 | 0.00 |
±0.20 | ± 0.10 | ±0.05 | | 0.5Imax | - | 0.01 | 0.00 | 0.00 | ±0.20 | ±0.10 | ±0.05 | | Imax | - | -0.01 | 0.01 | -0.01 | ±0.20 | ±0.10 | ±0.05 | #### 2.2 X-Ref 8.7.10 **Meter Constant** The relation between the test output and the meter energy registers were checked to ensure the constant marking on the meter nameplate. Sample No: M7 Test Procedure: EN50470-3 Meter Constant **Test Conditions:** Un:230V Imax:80A Cos. $\phi = 1.0, 50Hz$ **Test Circuit:** 1 phase 2 wire Measurement Mode: Active Import Energy kWh | Number of Pulses
Recorded | Pulse Constant
(p/ kWh) | LED Test
Output (kWh) | Energy Registered
By Meter (kWh) | Percentage difference
between Energy Registered
and LED Test Output (%) | |------------------------------|----------------------------|--------------------------|-------------------------------------|---| | 5004 | 1000 | 5.004 | 5.00 | -0.08 | Limit of % Error Variation: $\pm 0.20\%$ for Class A $\pm 0.10\%$ for Class B \pm 0.05% for Class C During the registration tests, rate registers not active were found not to have been corrupted. Sample No: M7 Test Procedure: EN50470-3 Meter Constant **Test Conditions:** Un:230V Imax:80A Cos. $\phi = 1.0, 50Hz$ **Test Circuit:** 1 phase 2 wire Measurement Mode: Active Export Energy kWh | Number of Pulses
Recorded | Pulse Constant
(p/ kWh) | LED Test
Output (kWh) | Energy Registered
By Meter (kWh) | Percentage difference
between Energy Registered
and LED Test Output (%) | |------------------------------|----------------------------|--------------------------|-------------------------------------|---| | 5013 | 1000 | 5.013 | 5.01 | -0.06 | Limit of % Error Variation: $\pm 0.20\%$ for Class A \pm 0.10% for Class B \pm 0.05% for Class C During the registration tests, rate registers not active were found not to have been corrupted. ### 2.3 Starting and No-Load Condition X-Ref. 8.7.9 # **Initial Start-up of the meter** X-Ref. 8.7.9.2 Sample No: M7 Test Procedure: EN50470-3 Start-up The meter samples were fully functional within 5s after rated voltage Un was applied to the meter terminals. No-load Condition X-Ref. 8.7.9.3 Sample No: M7 Test Procedure: EN50470-3 Non Registration Test 115(%U) Tests were conducted as follows; Test Conditions: 115% Un, current circuits open The minimum test duration in minutes being given by $$\begin{array}{ccc} \Delta t \; \geq \; & \frac{240 \times 10^3}{k \cdot m \cdot U_{test} \cdot I_{st}} [min] \end{array}$$ where k is the meter output constant (pulses per kWh) m is the number of measuring elements $\begin{array}{ll} U_{test} & is \ the \ test \ voltage \\ I_{st} & is \ the \ starting \ current \end{array}$ The meter samples were tested for a period of at least Δt minutes, on completion of which, no changes in the energy registers were recorded, and the test output did not produce more than one pulse. # **Starting and No-Load Condition (cont.)** Starting X-Ref. 8.7.9.4 Sample No: 11809192840047 Test Procedure: EN50470-3 Starting Current 0.04Itr The meter commenced and continued to measure the applied active power in the import and export direction. Test Conditions for Direct Connected meters Class A Active meters: Umin, 0.05Itr, Cos. $\phi = 1.0$, 50Hz Class B Active meters: Umin, 0.04Itr, Cos. $\phi = 1.0$, 50Hz Class C Active meters: Umin, 0.04Itr, Cos. $\phi = 1.0$, 50Hz # 2.4 Influence of Ambient Temperature X-Ref. 8.7.5.2 Sample No: M7 Test Procedure: EN50470-3 Temp Variation 5°C to 30°C Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh Operating Temperature: 5°C to 30°C (Balanced Load) | Elements/Lines | | Additional
% Error | Additional
% Error | Limits of additional % error | | onal | |----------------|-----------|-----------------------|-----------------------|------------------------------|----------|---------| | CURRENT | PF Cos. φ | 5°C | 30°C | | Accuracy | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | -0.0250 | 0.1428 | ±1.8 | ±0.9 | ±0.5 | | Itr | - | 0.0236 | 0.1886 | ±1.8 | ±0.9 | ±0.5 | | 10Itr(Iref/In) | - | 0.0968 | 0.2458 | ±1.8 | ±0.9 | ±0.5 | | Imax | - | -0.1802 | -0.0893 | ±1.8 | ±0.9 | ±0.5 | | | | | | | | | | Itr | 0.5ind | 0.1011 | 0.2713 | ±2.7 | ±1.3 | ±0.9 | | 10Itr(Iref/In) | - | 0.1859 | 0.3400 | ±2.7 | ±1.3 | ±0.9 | | Imax | - | -0.1948 | 0.2628 | ±2.7 | ±1.3 | ±0.9 | | | | | | | | | | Itr | 0.8cap | -0.0669 | 0.1064 | ±2.7 | ±1.3 | ±0.9 | | 10Itr(Iref/In) | - | 0.0030 | 0.1736 | ±2.7 | ±1.3 | ±0.9 | | Imax | - | -0.4535 | -0.3717 | ±2.7 | ±1.3 | ±0.9 | | | | | | | | | # **Influence of Ambient Temperature (cont.)** X-Ref. 8.7.5.2 Sample No: M7 Test Procedure: EN50470-3 Temp Variation -10°C to 40°C Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh Operating Temperature: -10°C to 40°C (Balanced Load) | Elements/l | Lines | Additional
% Error | Additional
% Error | Lin | nits of addition | onal | | |----------------|-----------|-----------------------|-----------------------|---------|------------------|---------|--| | CURRENT | PF Cos. φ | -10°C | 40°C | | Accuracy | | | | | | | | Class A | Class B | Class C | | | Imin | 1.0 | -0.1436 | 0.2106 | ±3.3 | ±1.6 | ±1.0 | | | Itr | - | -0.1133 | 0.2708 | ±3.3 | ±1.6 | ±1.0 | | | 10Itr(Iref/In) | - | -0.0414 | 0.3000 | ±3.3 | ±1.6 | ±1.0 | | | Imax | - | -0.1975 | 0.0278 | ±3.3 | ±1.6 | ±1.0 | | | | | | | | | | | | Itr | 0.5ind | -0.0333 | 0.3279 | ±4.9 | ±2.3 | ±1.6 | | | 10Itr(Iref/In) | - | 0.0376 | 0.3944 | ±4.9 | ±2.3 | ±1.6 | | | Imax | - | -0.2001 | -0.0624 | ±4.9 | ±2.3 | ±1.6 | | | | | | | | | | | | Itr | 0.8cap | -0.1888 | 0.1868 | ±4.9 | ±2.3 | ±1.6 | | | 10Itr(Iref/In) | - | -0.1363 | 0.2745 | ±4.9 | ±2.3 | ±1.6 | | | Imax | - | -0.2528 | -0.2527 | ±4.9 | ±2.3 | ±1.6 | | | | | | | | | | | # **Influence of Ambient Temperature (cont.)** X-Ref. 8.7.5.2 Sample No: M7 Test Procedure: EN50470-3 Temp Variation -25°C to 55°C Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh Operating Temperature: -25°C to 55°C (Balanced Load) | Elements/l | Lines | Additional
% Error | Additional
% Error | Lin | nits of addition | onal | |----------------|-----------|-----------------------|-----------------------|---------|------------------|---------| | CURRENT | PF Cos. ø | -25°C | 55°C | | Accuracy | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | -0.2839 | 0.2931 | ±4.8 | ±2.4 | ±1.4 | | Itr | - | -0.2548 | 0.3523 | ±4.8 | ±2.4 | ±1.4 | | 10Itr(Iref/In) | - | -0.1310 | 0.3843 | ±4.8 | ±2.4 | ±1.4 | | Imax | - | -0.2027 | 0.0087 | ±4.8 | ±2.4 | ±1.4 | | | | | | | | | | Itr | 0.5ind | -0.1682 | 0.3610 | ±7.2 | ±3.4 | ±3.1 | | 10Itr(Iref/In) | - | -0.0751 | 0.4210 | ±7.2 | ±3.4 | ±3.1 | | Imax | - | -0.1663 | -0.0085 | ±7.2 | ±3.4 | ±3.1 | | | | | | | | | | Itr | 0.8cap | -0.3342 | 0.2915 | ±7.2 | ±3.4 | ±3.1 | | 10Itr(Iref/In) | - | -0.2721 | 0.3625 | ±7.2 | ±3.4 | ±3.1 | | Imax | - | -0.2666 | -0.2820 | ±7.2 | ±3.4 | ±3.1 | | | | | | | | | # 2.5 Voltage Variation X-Ref. 8.7.5.3 Sample No: M7 Test Procedure: EN50470-3 Voltage Variation Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | | | 110% Un
Additional | 90% Un
Additional | Limit of | f Additional | % Error | |----------------|-----------|-----------------------|----------------------|----------|--------------|---------| | Current | PF Cos. φ | % Error | % Error | | Accuracy | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.1152 | 0.0921 | ±1.0 | ±0.7 | ±0.2 | | Itr | - | 0.1070 | 0.1023 | ±1.0 | ±0.7 | ±0.2 | | 10Itr(Iref/In) | - | 0.1095 | 0.1025 | ±1.0 | ±0.7 | ±0.2 | | Imax | - | 0.0416 | 0.0277 | ±1.0 | ±0.7 | ±0.2 | | | | | | | | | | Itr | 0.5ind | 0.2781 | 0.2447 | ±1.5 | ±1.0 | ±0.4 | | 10Itr(Iref/In) | - | 0.2654 | 0.2471 | ±1.5 | ±1.0 | ±0.4 | | Imax | - | 0.1460 | 0.1112 | ±1.5 | ±1.0 | ±0.4 | | | | | | | | | | Itr | 0.8cap | 0.0434 | 0.0297 | ±1.5 | ±1.0 | ±0.4 | | 10Itr(Iref/In) | - | 0.0417 | 0.0347 | ±1.5 | ±1.0 | ±0.4 | | Imax | - | -0.0486 | -0.0555 | ±1.5 | ±1.0 | ±0.4 | | | | | | | | | # 2.6 Frequency Variation X-Ref. 8.7.5.4 Sample No: M7 Test Procedure: EN50470-3 Frequency Variation Test Conditions: Un:230V Fn: 50Hz Imin:0.5A Itr:1A Iref:10A Imax:80A Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | | | 102% Fn
Additional | 98% Fn
Additional | Limit o | f Additional | % Error | |----------------|-----------|-----------------------|----------------------|----------|--------------|---------| | Current | PF Cos. φ | % Error | % Error | Accuracy | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.1003 | 0.0997 | ±0.8 | ±0.5 | ±0.2 | | Itr | - | 0.0949 | 0.1080 | ±0.8 | ±0.5 | ±0.2 | | 10Itr(Iref/In) | - | 0.0908 | 0.1134 | ±0.8 | ±0.5 | ±0.2 | | Imax | - | 0.0208 | 0.0416 | ±0.8 | ±0.5 | ±0.2 | | | | | | | | | | Itr | 0.5ind | 0.2571 | 0.2582 | ±1.0 | ±0.7 | ±0.2 | | 10Itr(Iref/In) | - | 0.2510 | 0.2685 | ±1.0 | ±0.7 | ±0.2 | | Imax | - | 0.1112 | 0.1390 | ±1.0 | ±0.7 | ±0.2 | | | | | | | | | | Itr | 0.8cap | 0.0240 | 0.0323 | ±1.0 | ±0.7 | ±0.2 | | 10Itr(Iref/In) | - | 0.0191 | 0.0399 | ±1.0 | ±0.7 | ±0.2 | | Imax | - | -0.0693 | -0.0486 | ±1.0 | ±0.7 | ±0.2 | | | | | | | | | # 2.7 Composite Error X-Ref. 8.7.6 In addition to the accuracy requirements of clause 8.1 and 8.3, the composite error e_c of the meter shall not exceed the values given below: | | | Intrinsic | Temp. | Voltage | Freq. | Comp. | Operati | ing Tempera | uture -25°C | | |---------|--------|---------------|----------------|----------------|----------------
-------|------------|-----------------------------|-------------|--| | | | Error | Error | Error | Error | Error | Орстан | Operating Temperature -25°C | | | | Current | PF | | -25°C | ±10% Un | ±2% fn | | Movimum | Dormiccible | Error (MPE) | | | | Cos. ø | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maxilliull | i i ciiiissibie | Ellor (MFE) | | | | | | | | | | Class A | Class B | Class C | | | Imin | 1.0 | 0.0579 | -0.2839 | 0.1152 | 0.1003 | 0.33 | ±7.0 | ±3.5 | ±1.7 | | | Itr | - | 0.0927 | -0.2548 | 0.1070 | 0.1080 | 0.31 | ±7.0 | ±3.5 | ±1.7 | | | 10Itr | - | 0.0868 | -0.1310 | 0.1095 | 0.1134 | 0.22 | ±7.0 | ±3.5 | ±1.7 | | | Imax | - | 0.0208 | -0.2027 | 0.0416 | 0.0416 | 0.21 | ±7.0 | ±3.5 | ±1.7 | | | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | -0.1682 | 0.2781 | 0.2582 | 0.48 | ±7.0 | ±3.5 | ±1.3 | | | 10Itr | - | 0.2340 | -0.0751 | 0.2654 | 0.2685 | 0.45 | ±7.0 | ±3.5 | ±1.3 | | | Imax | - | 0.0973 | -0.1663 | 0.1460 | 0.1390 | 0.28 | ±7.0 | ±3.5 | ±1.3 | | | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | -0.3342 | 0.0434 | 0.0323 | 0.34 | ±7.0 | ±3.5 | ±1.3 | | | 10Itr | - | 0.0208 | -0.2721 | 0.0417 | 0.0399 | 0.28 | ±7.0 | ±3.5 | ±1.3 | | | Imax | - | -0.0624 | -0.2666 | -0.0555 | -0.0693 | 0.29 | ± 7.0 | ±3.5 | ±1.3 | | | | | | | | | | | | | | | | | Intrinsic
Error | Temp.
Error | Voltage
Error | Freq.
Error | Comp.
Error | Operat | ing Tempera | ture -10°C | |---------|--------|--------------------|----------------|------------------|----------------|----------------|-----------|-----------------|--------------| | Current | PF | | -10°C | ±10% Un | ±2% fn | | Maximum | Permissible | Error (MPE) | | | Cos. ø | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maximum | i i ciiiissioic | Ellor (MI E) | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.0579 | -0.1436 | 0.1152 | 0.1003 | 0.22 | ± 5.0 | ± 2.5 | ±1.3 | | Itr | - | 0.0927 | -0.1133 | 0.1070 | 0.1080 | 0.21 | ± 5.0 | ± 2.5 | ±1.3 | | 10Itr | - | 0.0868 | -0.0414 | 0.1095 | 0.1134 | 0.18 | ± 5.0 | ± 2.5 | ±1.3 | | Imax | - | 0.0208 | -0.1975 | 0.0416 | 0.0416 | 0.21 | ±5.0 | ±2.5 | ±1.3 | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | -0.0333 | 0.2781 | 0.2582 | 0.45 | ±4.5 | ± 2.5 | ±1.0 | | 10Itr | - | 0.2340 | 0.0376 | 0.2654 | 0.2685 | 0.45 | ±4.5 | ± 2.5 | ±1.0 | | Imax | - | 0.0973 | -0.2001 | 0.1460 | 0.1390 | 0.30 | ±4.5 | ± 2.5 | ±1.0 | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | -0.1888 | 0.0434 | 0.0323 | 0.20 | ±4.5 | ±2.5 | ±1.0 | | 10Itr | - | 0.0208 | -0.1363 | 0.0417 | 0.0399 | 0.15 | ±4.5 | ±2.5 | ±1.0 | | Imax | - | -0.0624 | -0.2528 | -0.0555 | -0.0693 | 0.28 | ±4.5 | ±2.5 | ±1.0 | | | | | | | | | | | | | | | Intrinsic
Error | Temp.
Error | Voltage
Error | Freq.
Error | Comp.
Error | Operating | g Temperatur | re Range 5°C | |---------|-------------|--------------------|----------------|------------------|----------------|----------------|------------|-----------------|--------------| | Current | PF | | 5°C | ±10% Un | ±2% fn | | Movimum | Dormiccible | Error (MPE) | | | Cos. ϕ | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maxilliuli | i i ciiiissibie | EHOI (MIFE) | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.0579 | -0.0250 | 0.1152 | 0.1003 | 0.17 | ±3.5 | ±2.0 | ±1.0 | | Itr | - | 0.0927 | 0.0236 | 0.1070 | 0.1080 | 0.18 | ±3.5 | ±2.0 | ±1.0 | | 10Itr | - | 0.0868 | 0.0968 | 0.1095 | 0.1134 | 0.20 | ±3.5 | ±2.0 | ±1.0 | | Imax | - | 0.0208 | -0.1802 | 0.0416 | 0.0416 | 0.19 | ±3.5 | ±2.0 | ±1.0 | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | 0.1011 | 0.2781 | 0.2582 | 0.46 | ±3.5 | ± 2.0 | ±0.7 | | 10Itr | - | 0.2340 | 0.1859 | 0.2654 | 0.2685 | 0.48 | ±3.5 | ±2.0 | ±0.7 | | Imax | - | 0.0973 | -0.1948 | 0.1460 | 0.1390 | 0.30 | ±3.5 | ±2.0 | ±0.7 | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | -0.0669 | 0.0434 | 0.0323 | 0.09 | ±3.5 | ±2.0 | ±0.7 | | 10Itr | - | 0.0208 | 0.0030 | 0.0417 | 0.0399 | 0.06 | ±3.5 | ±2.0 | ±0.7 | | Imax | - | -0.0624 | -0.4535 | -0.0555 | -0.0693 | 0.47 | ±3.5 | ±2.0 | ±0.7 | | | | | | | | | | | | | | | Intrinsic
Error | Temp.
Error | Voltage
Error | Freq.
Error | Comp.
Error | Operat | ing Tempera | nture 30°C | |---------|-------------|--------------------|----------------|------------------|----------------|----------------|-----------|-------------|-------------| | Current | PF | | 30°C | ±10% Un | ±2% fn | | Marimum | Domnigaible | Eman (MDE) | | | Cos. ϕ | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maximum | Permissible | Error (MPE) | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.0579 | 0.1428 | 0.1152 | 0.1003 | 0.22 | ±3.5 | ±2.0 | ±1.0 | | Itr | - | 0.0927 | 0.1886 | 0.1070 | 0.1080 | 0.26 | ±3.5 | ±2.0 | ±1.0 | | 10Itr | - | 0.0868 | 0.2458 | 0.1095 | 0.1134 | 0.30 | ±3.5 | ±2.0 | ±1.0 | | Imax | - | 0.0208 | -0.0893 | 0.0416 | 0.0416 | 0.11 | ±3.5 | ±2.0 | ±1.0 | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | 0.2713 | 0.2781 | 0.2582 | 0.52 | ± 3.5 | ±2.0 | ±0.7 | | 10Itr | - | 0.2340 | 0.3400 | 0.2654 | 0.2685 | 0.56 | ± 3.5 | ±2.0 | ±0.7 | | Imax | - | 0.0973 | 0.2628 | 0.1460 | 0.1390 | 0.35 | ±3.5 | ±2.0 | ±0.7 | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | 0.1064 | 0.0434 | 0.0323 | 0.12 | ±3.5 | ±2.0 | ±0.7 | | 10Itr | - | 0.0208 | 0.1736 | 0.0417 | 0.0399 | 0.18 | ±3.5 | ±2.0 | ±0.7 | | Imax | - | -0.0624 | -0.3717 | -0.0555 | -0.0693 | 0.39 | ±3.5 | ±2.0 | ±0.7 | | | | | | | | | | | | | | | Intrinsic
Error | Temp.
Error | Voltage
Error | Freq.
Error | Comp.
Error | Operat | ing Tempera | ature 40°C | |---------|--------|--------------------|----------------|------------------|----------------|----------------|-----------|-----------------|--------------| | Current | PF | | 40°C | ±10% Un | ±2% fn | | Maximum | Permissible | Error (MPE) | | | Cos. ø | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maximum | i i ciiiissioic | Ellor (WILE) | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.0579 | 0.2106 | 0.1152 | 0.1003 | 0.27 | ± 5.0 | ±2.5 | ±1.3 | | Itr | - | 0.0927 | 0.2708 | 0.1070 | 0.1080 | 0.32 | ± 5.0 | ± 2.5 | ±1.3 | | 10Itr | - | 0.0868 | 0.3000 | 0.1095 | 0.1134 | 0.35 | ± 5.0 | ± 2.5 | ±1.3 | | Imax | - | 0.0208 | 0.0278 | 0.0416 | 0.0416 | 0.07 | ±5.0 | ± 2.5 | ±1.3 | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | 0.3279 | 0.2781 | 0.2582 | 0.55 | ±4.5 | ± 2.5 | ±1.0 | | 10Itr | - | 0.2340 | 0.3944 | 0.2654 | 0.2685 | 0.59 | ±4.5 | ± 2.5 | ±1.0 | | Imax | - | 0.0973 | -0.0624 | 0.1460 | 0.1390 | 0.23 | ±4.5 | ± 2.5 | ±1.0 | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | 0.1868 | 0.0434 | 0.0323 | 0.20 | ±4.5 | ± 2.5 | ±1.0 | | 10Itr | - | 0.0208 | 0.2745 | 0.0417 | 0.0399 | 0.28 | ±4.5 | ± 2.5 | ±1.0 | | Imax | - | -0.0624 | -0.2527 | -0.0555 | -0.0693 | 0.28 | ±4.5 | ±2.5 | ±1.0 | | | | | | | | | | | | | | | Intrinsic
Error | Temp.
Error | Voltage
Error | Freq.
Error | Comp.
Error | Operat | ing Tempera | ature 55°C | |---------|-------------|--------------------|----------------|------------------|----------------|----------------|---------|-------------|---------------| | Current | PF | | 55°C | ±10% Un | ±2% fn | | Marimum | Domoiosible | Eman (MDE) | | | Cos. ϕ | $e(Icos\phi)$ | $e(TIcos\phi)$ | $e(UIcos\phi)$ | $e(fIcos\phi)$ | % MPE | Maximum | Permissible | e Error (MPE) | | | | | | | | | Class A | Class B | Class C | | Imin | 1.0 | 0.0579 | 0.2931 | 0.1152 | 0.1003 | 0.34 | ±7.0 | ±3.5 | ±1.7 | | Itr | - | 0.0927 | 0.3523 | 0.1070 | 0.1080 | 0.39 | ±7.0 | ±3.5 | ±1.7 | | 10Itr | - | 0.0868 | 0.3843 | 0.1095 | 0.1134 | 0.42 | ±7.0 | ±3.5 | ±1.7 | | Imax | - | 0.0208 | 0.0087 | 0.0416 | 0.0416 | 0.06 | ±7.0 | ±3.5 | ±1.7 | | | | | | | | | | | | | Itr | 0.5ind | 0.2359 | 0.3610 | 0.2781 | 0.2582 | 0.57 | ±7.0 | ±3.5 | ±1.3 | | 10Itr | - | 0.2340 | 0.4210 | 0.2654 | 0.2685 | 0.61 | ±7.0 | ±3.5 | ±1.3 | | Imax | - | 0.0973 | -0.0085 | 0.1460 | 0.1390 | 0.22 | ±7.0 | ±3.5 | ±1.3 | | | | | | | | | | | | | Itr | 0.8cap | 0.0215 | 0.2915 | 0.0434 | 0.0323 | 0.30 | ±7.0 | ±3.5 | ±1.3 | | 10Itr | - | 0.0208 | 0.3625 | 0.0417 | 0.0399 | 0.37 | ±7.0 | ±3.5 | ±1.3 | | Imax | - | -0.0624 | -0.2820 | -0.0555 | -0.0693 | 0.30 | ±7.0 | ±3.5 | ±1.3 | | | | | | | | | | | | # 3 VARIATION OF ERROR DUE TO DISTURBANCES OF LONG DURATION EN50470-3 X-Ref. 8.7.7 # 3.1 Severe Voltage Variation X-Ref. 8.7.7.2 Sample No: M7 Test Procedure: EN50470-3 Severe Voltage Variation Test Conditions: Un:230V Iref:10A Fn: 50Hz Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | | | 80%
Un | 115%
Un | Critical Change % Error Limit | | | | |--------------|-----------|-----------|------------|-------------------------------|-----------------|-----------------|--| | Current | PF Cos. ø | % Error | % Error | | Accuracy | | | | 10Itr (Iref) | 1.0 | 0.0651 | 0.0964 | Class A
±3.0 | Class B
±2.1 | Class C
±0.6 | | | 10Itr (Iref) | 0.5ind | 0.2201 | 0.2716 | ±4.5 | ±3.0 | ±1.2 | | | | | < 80%
Un | Critical Change % Error Limit | | | | | |-----------------|-----------|-------------|-------------------------------|----------|--|--|--| | Current | PF Cos. φ | % Error | | Accuracy | | | | | 10Itr (Iref/In) | 1.0 | 0.0521 | Class A | | | | | | 10Itr (Iref/In) | 0.5ind | 0.2026 | +10 to -100 | | | | | #### 3.2 Short-time Over Current X-Ref. 8.7.8 Sample No: 11809192840047 Test Procedure: EN50470-3 Short-Time Over-Current #### **Environmental Conditions** | Temperature | 21.5 °C | |---------------------|---------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | The test was applied under the following conditions: Meter for direct connection: Impulse current applied: 30.Imax for one half cycle at rated frequency = 10ms The test was
applied under the following conditions: Meter for connection through current transformer: Impulse current applied: 20.Imax for 0.5seconds On completion of the above test, the meters voltage circuits were energised at reference voltage for 1 hour after which the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions. Test Conditions: Un:230V Itr:1A Fn: 50Hz Test Circuit: 1 phase 2 wire | | | | Critical Change % Error Limit | | | |----------|-----------|---------|-------------------------------|---------|---------| | Current | PF Cos. φ | % Error | Accuracy | | | | | | | Class A | Class B | Class C | | 10Itr/Ib | 1.0 | 0.094 | ±1.5 | ±1.5 | ±1.5 | # 3.3 Influence of Self Heating X-Ref. 8.7.7.5 The meter voltage circuits were energised at reference voltage for at least 1 hour (class A), 2 hours(class B & C), without any current in the current circuits, after which the meter's maximum rated current was applied and the meter error determined every 5 minutes. The test was conducted at power factors of both Cos. $\phi = 1.0$ and Cos. $\phi = 0.5$ ind. Sample No: M7 Test Procedure: EN50470-3 (Class B) Self Heating Test Conditions: Un:230V Fn: 50Hz *Imax:* 80A *PF:* Cos. $\phi = 1.0$, Cos. $\phi = 0.5$ Test Circuit: 1 phase 2 wire Measurement Mode: Active Energy kWh Measurement mode-Active Energy kWh | Elapsed Test time | Un Im $Cos.\phi = 1.0$ | Un Im $Cos.\phi = 0.5$ | |-------------------|------------------------|------------------------| | (minutes) | % Error | % Error | | 1 | 0.0416 | 0.2087 | | 5 | 0.0382 | 0.2262 | | 10 | 0.0521 | 0.2331 | | 15 | 0.0660 | 0.2331 | | 20 | 0.0695 | 0.2331 | | 25 | 0.0799 | 0.2401 | | 30 | 0.0869 | 0.2262 | | 35 | 0.0834 | 0.2366 | | 40 | 0.0938 | 0.2331 | | 45 | 0.0834 | 0.2262 | | 50 | 0.0903 | 0.2331 | | 55 | 0.0938 | 0.2262 | | 60 | 0.0973 | 0.2262 | ## Critical Change of % Error Limit: Class C $\pm 0.2\%$ @ Cos. $\phi = 1.0 \& \pm 0.2\%$ @ Cos. $\phi = 0.5$ ind Class B $\pm 0.7\%$ @ Cos. $\phi = 1.0 \& \pm 1.0\%$ @ Cos. $\phi = 0.5$ ind Class A $\pm 1.0\%$ @ Cos. $\phi = 1.0 \& \pm 1.5\%$ @ Cos. $\phi = 0.5$ ind #### 3.4 **Harmonic Components in the Current and Voltage Circuits** X-Ref. 8.7.7.7 Sample No: 11809192840047 Test Procedure: EN50470-3 Harmonics Tests **Test Conditions:** Un:230V *Fn: 50Hz PF*: *Cos.* $\phi = 1.0$ > Iref:10A Imax:80A Fundamental Frequency Current: $I_0 = 0.5 \text{ Imax}$ $U_0 = U_n$ Fundamental frequency Voltage: Content of 5th Harmonic Current: Content of 5th Harmonic Voltage: $I_5 = 40\% \text{ of } I_0$ $U_5 = 10\%$ of Un Resulting harmonic power due to the 5^{th} harmonic presence: $P_{resultant} = 1.04 P_0$ Test Circuit: 1 phase 2 wire Measurement Mode: Active Energy kWh | Wayafama | % Error | Critical Change % Error Limit | | | | |--|---------|-------------------------------|---------|---------|--| | Waveform | | Accuracy | | | | | | | Class A | Class B | Class C | | | Fundamental Only (P ₀) | | | | | | | 0.5 Imax | 0.046 | - | - | - | | | | | | | 0.7 | | | Fundamental + 5 th Harmonic | 0.042 | ±1.0 | ±0.8 | ±0.5 | | | $(P_{resultant} = 1.04 P_0)$ | | | | | | #### 3.5 Influence of Odd and Sub Harmonics in the AC Current Circuit X-Ref. 8.7.7.9 Sample No: 11809192840047 Test Procedure: EN50470-3 Harmonics Tests Test Conditions: Un:230V Fn: 50Hz $PF: Cos. \phi = 1.0$ 5*Itr:5A* Reference Current Waveform: $I_{ref} = 5Itr \text{ or } 0.5In$ $\label{eq:continuous_problem} \begin{aligned} & Reference \ Voltage: & & U = Un \\ & Test \ Current \ Phase-Fired \ Waveform: & & I_{test} \ = 2 \cdot I_{ref} \end{aligned}$ Firing Points: 5ms and 15ms \pm 1ms $\begin{array}{ll} Test \ Current \ Burst \ fired \ Waveform: & I_{test} = 2 \cdot I_{ref} \\ Distortion \ Factor \ on \ the \ Voltage \ Waveform: < 0.5 \% \ THD \end{array}$ Test Circuit: 1 phase 2 wire Measurement Mode: Active Energy kWh | Waveform | % Error | Critical Change % Error Limit | | | | |-----------------------------------|----------|-------------------------------|----------|---------|--| | Waveform | 70 E1101 | | Accuracy | | | | | | Class A | Class B | Class C | | | Fundamental Only 5Itr / 0.5Ib | 0.059 | - | - | - | | | Waveform Phase-fired Test current | 0.104 | ±6.0 | ±3.0 | ±1.5 | | | Waveform Burst fired Test current | 0.031 | ±6.0 | ±3.0 | ±1.5 | | # 3.6 Influence of D.C. and Even Harmonics in the A.C Current Circuit X-Ref. 8.7.7.8 Sample No: 11809192840047 Test Procedure: EN50470-3 Harmonics Tests Test Conditions: Un:230V Fn: 50Hz Imax:80A PF: Cos. $\phi = 1.0$ Test Circuit: 1 phase 2 wire. In the case of Polyphase meter's tests were conducted on element L1 only. A.C current: 0.707Imax - fundamental waveform (I_{ref}) Equivalent half wave DC current: 0.707Imax. (I_{Test}) | | | Critical Change % Error Limit | | | |--------------------------------|---------|-------------------------------|---|------| | Test Current | % Error | Accuracy | | | | | | Class A Class B Class C | | | | 0.707Imax (I _{ref}) | 0.594 | - | - | - | | 0.707Imax (I _{test}) | -0.246 | ±6.0 ±3.0 ±1 | | ±1.5 | # 4 ELECTRICAL REQUIREMENTS EN50470-1 X-Ref. 7 # 4.1 Power Consumption EN50470-3 X-Ref. 7.1 Sample No: M7 Test Procedure: EN50470-3 Power Consumption #### **Environmental Conditions** | Temperature | 21.5 °C | |---------------------|---------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | | | Volts/V | Amps/A | VA | Watts/W | |---------------------------------------|---------|--------|-------|---------| | Wiring Configuration: 1 Phase 2 Wire | | | | | | Voltage Circuit: L1 | 230 | 0.017 | 3.91 | 0.58 | | Current Circuit: L1 | 0.0057 | 10 | 0.057 | | Power consumption limits shall not exceed the following based on IEC 62053-61: 1998-02 | Voltage Circuits | Single | <u>Phase</u> | <u>Two E</u> | lement | <u>Three</u> | Element | |----------------------|--------|--------------|--------------|--------|--------------|---------| | Basic Meter | 2W | 10VA | 2W | 10VA | 2W | 10VA | | Multi-Energy Meter | 3W | 15VA | 2.5W | 12.5VA | 2W | 10VA | | Multi-Function Meter | r 5W | 25VA | 3.5W | 17.5VA | 3W | 15VA | **Current Circuits** Direct connected 2.5VA for Class A 4.0VA for Class B & Class C # 4.2 Test of Influence of Heating EN50470-1 X-Ref. 7.2 Sample No: M7 Test Procedure: EN50470-3 Heating Test Conditions: 115%Un:264.5V Imax:80A Fn: 50Hz Ambient Temperature : 40°C Test Duration : 2 hours Surface Temperature Rise : 17.6 K Permissible temperature rise: 25K Surface temperature of the meter was measured on the meter back, approximately 10mm above the meter terminal block. On completion of the above tests, the meters were found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or degradation in the meter's insulation properties. # 5 **ELECTROMAGNETIC COMPATIBILITY (E.M.C.)** EN50470-1 X-Ref. 7.4 ### 5.1 Immunity to Voltage Dips and Interruptions X-Ref. 7.4.4 Sample No: 11809192840047 Test Procedure: EN50470-3 Voltage Dips #### **Environmental Conditions** | Power Supply | 230V, 50Hz | |---------------------|------------| | Temperature | 21.5°C | | Relative Humidity | 56% | | Barometric Pressure | 998mB | Test Circuit: 1 phase 2 wire, in the case of Polyphase meters tests were conducted on each voltage circuit in turn. The tests were applied under the following conditions; - voltage and auxiliary circuits energised with reference voltage - current circuits open. Test a) Voltage interruption of: V = 100% Interruption time: 1s Number of interruptions: 3 Restoring time between interruption: 50ms Test b) Voltage interruption of: V = 100% Interruption time: 20ms Number of interruptions: 1 Test c) Voltage depression of: V=50% Depression time: 60s Number of depressions: 1 The application of the above tests did not produce a change in the meter registers of more than x kWh, and the test output did not produce a signal equivalent of more than x kWh, where x is given by $x = 10^{-6} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}$ ### **5.2** Immunity to Electrostatic Discharges (ESD) EN50470-1 X-Ref. 7.4.5 Sample No: 11809192840047 Test Procedure: EN50470-3 Electrostatic Discharge The meter was tested in accordance with IEC 61000-4-2 as follows: #### **Environmental Conditions** | Power Supply | 230V, 50Hz | |---------------------|------------| | Temperature | 21.5°C | | Relative Humidity | 52% | | Barometric Pressure | 998mB | #### **E.S.D** Generator specification: **Test level severities:** 8kV contact, conductive surfaces / coupling planes 15kV air gap discharge - non conducting surfaces **Polarity:** Positive and negative **Number of discharges:** 10 at each polarity **Rise time of discharge current:** <1ns **Pulse duration (50%):** 30ns **Time between discharges:** 1s Meter in operating condition with the voltage and auxiliary circuits energised. Current circuits open. The application of the electrostatic discharge did not produce a change in the meter registers of more than x kWh, and the test output did not produce a signal equivalent of more than x kWh, where x is given by $$x = 10^{-6} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}$$ On completion of the above tests, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions. ### 5.3 Immunity to Electromagnetic HF Fields EN50470-1 X-Ref. 7.4.6 EN50470-3 X-Ref. 8.7.7.12 Sample No: 11809192840054 Test Procedure: EN50470-1 Radiated Immunity The meter was tested in accordance with IEC 61000-4-3 in the SCM Anechoic chamber as follows: #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 56% | | Barometric Pressure | 998mB | **Port:** Enclosure **Test Level:** 10 V/m (test 1) & 30 V/m (test 2) Frequency Range: 80-2000 MHz **Dwell Time:** Frequency Step Size: 1%
Modulation: 80%, 1 kHz Amplitude Modulation. ### **Operating Mode:** Test 1) Voltage and auxiliary circuits energised with reference voltage, current (10Itr) in the current circuits, Cos. $\phi = 1$. Test 2) Voltage and auxiliary circuits energised with reference voltage, without any current in the current circuits. Current circuits open circuit. ### Test Results (80-2000MHz) | EUT Face | Polarity | Test 1
Maximum %
Error Observed | Test 2 | Critical Change | e % Error Limit | |----------|------------|---------------------------------------|--------|-----------------|-----------------| | | | Ellol Observed | | Acci | uracy | | | | | | Class B | Class C | | Front | Horizontal | 0.39 | Note 1 | ±2.0 | ±1.0 | | Front | Vertical | 0.41 | Note 1 | ±2.0 | ±1.0 | | Rear | Horizontal | 0.41 | Note 1 | ±2.0 | ±1.0 | | Rear | Vertical | 0.42 | Note 1 | ±2.0 | ±1.0 | | LHS | Horizontal | 0.43 | Note 1 | ±2.0 | ±1.0 | | LHS | Vertical | 0.41 | Note 1 | ±2.0 | ±1.0 | | RHS | Horizontal | 0.39 | Note 1 | ±2.0 | ±1.0 | | RHS | Vertical | 0.40 | Note 1 | ±2.0 | ±1.0 | | | | | | | | ### **Immunity to Electromagnetic HF Fields (cont)** EN50470-1 X-Ref. 7.4.6 EN50470-3 X-Ref. 8.7.7.12 Note 1: No change of register information and no signal outputs observed The application of the RF electromagnetic field did not produce a change in the meter registers of more than x kWh, and the test output did not produce a signal equivalent of more than x kWh, where x is given by $$x = 10^{-6} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}$$ where x is the critical change value in kWhm is the number of measuring elementsUn is the reference voltageImax is the maximum current #### 5.4 Immunity to Electrical Fast Transients EN50470-1 X-Ref. 7.4.7 EN50470-3 X-Ref. 8.7.7.14 Sample No: 11809192840053 Test Procedure: EN50470-1 Fast Transient Bursts The meter was tested in accordance with IEC 61000-4-4 as follows: #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 52% | | Barometric Pressure | 998mB | ### **Transient/Burst specification:** **Pulse level severity:** 4kV – current and voltage circuits 2kV – auxiliary circuits Rise time:5nsWidth:50nsRepetition Rate:5 kHzBurst Duration:15msBurst Period:300ms **Burst Generation:** Asynchronous (Common mode) ### **Operating mode:** The meter voltage circuits were energised at reference voltage Un, with 10Itr Cos. ϕ = 1.0 in the current circuits. Test voltage severity level ±4kV, Repetition Rate 5kHz voltage and current circuits Test voltage severity level ±2kV, Repetition Rate 5kHz auxiliary circuits > 40V The test voltage was applied on the current and voltage circuits in common mode, for a test duration of 60 seconds at each polarity. # **Immunity to Electrical Fast Transients (cont)** ### **Test Results** | | | Critical | Change % E | rror Limit | |----------------------------------|---------|----------|------------|------------| | Test Voltage (kV) | % Error | | Accuracy | | | No FTB applied | | Class A | Class B | Class C | | ±4 (Voltage & Current Circuits) | -0.12 | ±6.0 | ±4.0 | ±2.0 | | ±2 (Auxiliary Circuits of > 40V) | | ±6.0 | ±4.0 | ±2.0 | On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or corruption to meter register data. ### **5.5** Immunity to Conducted Disturbances EN50470-1 X-Ref. 7.4.8 EN50470-3 X-Ref. 8.7.7.15 Sample No: 11809192840057 Test Procedure: EN50470-1 Conducted Immunity The meter was tested in accordance with IEC 61000-4-6 as follows: #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 52% | | Barometric Pressure | 998mB | **Ports:** Current, Voltage and Auxiliary Circuits Test Level: 10 V Frequency Range: 0.15 to 80 MHz **Dwell Time:** 2 Secs **Frequency Step Size:** 1% **Modulation:** 80%, 1kHz Amplitude Modulation. # **Operating Mode:** Voltage and auxiliary circuits energised with reference voltage and with 10Itr applied ### **Test Results:** | | | Maximum | Critical | Change % E | rror Limit | |-------------------------------|-----------------|----------|----------|------------|------------| | MUT Port | Frequency Range | % | | Accuracy | | | WICTIOIL | (MHz) | Error | | | | | | | Observed | | | | | | | | Class A | Class B | Class C | | Voltage &
Current Circuits | 0.15 to 80 | 0.08 | ±3.0 | ±2.0 | ±1.0 | ### 5.6 Immunity to Surges EN50470-1 X-Ref 7.4.9 Sample No: 11809192840047 Test Procedure: EN50470-1 Surge The meter was tested in accordance with IEC 61000-4-5 as follows: #### **Environmental Conditions** | Temperature | 21.5°C | |---------------------|--------| | Relative Humidity | 56% | | Barometric Pressure | 998mB | Ports: Voltage and Auxiliary Circuits Test Voltage: 4kV mains, 1kV auxiliary Test Mode: Differential (line to line) **Phase Angle:** 60° and 240° relative to zero crossing **Number of Tests:** 5 positive and 5 negative **Repetition Rate:** 1/min ### **Operating mode:** The meter voltage circuits were energised at reference voltage Un, without any current in the current circuits The application of the surge immunity test voltage did not produce a change in the meter registers of more than x kWh and the test output did not produce a signal equivalent of more than x kWh, where x is given by $$x = 10^{-6} \cdot \text{m} \cdot \text{Un} \cdot \text{Imax}$$ #### 5.7 Radio Interference Measurement EN50470-1 X-Ref. 7.4.13 #### **Radiated Emissions** | Sample No: 11809192840057 | Test Procedure: EN50470-1 Radiated Emissions | |---------------------------|--| | | | The meter was tested in accordance with EN55022 as follows: #### **Environmental Conditions** | Power Supply | 230V, 50Hz | |---------------------|------------| | Temperature | 21.5°C | | Relative Humidity | 56% | | Barometric Pressure | 998mB | The MUT compliance measurements were performed in the SCM Semi-Anechoic chamber (which is in compliance with the site attenuation requirements of EN55016-1-4:2007, A1:2008). The measurement distance was 3m and the limit has been adjusted using inverse proportionality factor of 20dB per decade. ### **Operating Mode** The MUT was operated with voltage and auxiliary circuits energised with reference voltage and a current of between 0.1Iref and 0.2Iref and 1m leads attached to all terminals. ### **Radiated Emissions (cont)** **Results: Pass** Limit values of equipment | Frequency/MHz | Test distance 10m,QP/dB(μV/m) | |---------------|-------------------------------| | 30~230 | 30 | | 230~1000 | 37 | # Horizontal Polarisation Worse Case Emissions Compliance Measurements 30 – 1000MHz Test data | Sample No. | Frequency | Measuring value | Antenna
Factor
+Cable | Standard value | | | Height | Azimuth | |------------|------------|-----------------|-----------------------------|----------------|------|----|--------|---------| | | MHz | dB(μV/m) | loss
dB | dB(μV/m) | dB | | cm | deg | | | 41.875600 | 9.7 | 13.2 | 30.0 | 20.3 | QP | 100.0 | 31.0 | | - | 159.069800 | 12.7 | 15.2 | 30.0 | 17.3 | QP | 100.0 | -73.0 | | | 370.718600 | 15.6 | 17.9 | 37.0 | 21.4 | QP | 100.0 | 136.0 | ### Test curves #### RE 30MHz-1GHz # **Radiated Emissions (cont)** **Results: Pass** # Vertical Polarisation Worse Case Emissions Compliance Measurements 30 – 1000MHz ### Test data | Sample
No. | Frequency | Measuring value | Antenna
Factor
+Cable
loss | Standard
value | Over
limit | Detector | Height | Azimuth | |---------------|------------|-----------------|-------------------------------------|-------------------|---------------|----------|--------|---------| | | MHz | $dB(\mu V/m)$ | dB | $dB(\mu V/m)$ | dB | | cm | deg | | | 50.310600 | 10.7 | 13.8 | 30.0 | 19.3 | QP | 100.0 | -60.0 | | - | 158.866600 | 12.7 | 15.2 | 30.0 | 17.3 | QP | 180.0 | -128.0 | | | 363.556200 | 15.4 | 17.7 | 37.0 | 21.6 | QP | 100.0 | -135.0 | ### Test curves #### RE 30MHz-1GHz ### **Conducted Emissions** Sample No: 11809192840053 Test Procedure: EN50470-1 Conducted Emissions The meter was tested in accordance with EN55022 as follows: ### **Environmental Conditions** | Power Supply | 230V, 50Hz | |---------------------|------------| | Temperature | 21.5°C | | Relative Humidity | 56% | | Barometric Pressure | 998mB | The emissions on the AC mains were measured in the frequency range 0.15 - 30 MHz ### **Operating Mode** The MUT was operated with voltage and auxiliary circuits energised with reference voltage and a current of between 0.1Iref and 0.2Iref and 1m leads attached to all terminals. # **Conducted Emissions (cont)** **Results: Pass** # **Equipment Limit values** | Frequency(MH z) | AVG /dB(μ V) | QP /dB(μV) | |-----------------|-------------------|------------| | 0.15~0.5 | 56~46 | 66~56 | | 0.5~5 | 46 | 56 | | 5~30 | 50 | 60 | # **Line 1 Terminal Worst Case Emissions Compliance Measurements** Data of conducted emission | Data of conducted chrission | | | | | | | |-----------------------------|-----------|-----------------|------------------------------------|-------------------|---------------|----------| | Sample
No. | Frequency | Measuring value | Corr.
factors+
Cable
loss | Standard
value | Over
Limit | Detector | | | MHz | dB(μV) | dB | dB(µV) | dB | | | | 0.441000 | 42.3 | 10.1 | 57.0 | 14.7 | QP | | | 0.917000 | 43.2 | 10.1 | 56.0 | 12.8 | QP | | | 6.245000 | 24.4 | 10.3 | 60.0 | 35.6 | QP | | - | 0.913000 | 35.8 | 10.1 | 46.0 | 10.2 | AVG | | | 0.913000 | 35.9 | 10.1 | 46.0 | 10.1 | AVG | | | 6.081000 | 18.6 | 10.3 | 50.0 | 31.4 | AVG | # Curves of conducted emission ESH2-Z5_Voltage_Class B_Custom # **Conducted Emissions (cont)** # **Neutral Terminal Worst Case Emissions Compliance Measurements** ### Data of conducted emission | Sample
No. | Frequency | Measuring value | Corr.
factors+
Cable
loss |
Standard value | Over
Limit | Detector | |---------------|-----------|-----------------|------------------------------------|----------------|---------------|----------| | | MHz | dB(μV) | dB | dB(μV) | dB | | | | 0.401000 | 42.6 | 10.1 | 57.8 | 15.2 | QP | | | 0.905000 | 42.7 | 10.1 | 56.0 | 13.3 | QP | | | 5.773000 | 22.5 | 10.3 | 60.0 | 37.5 | QP | | - | 0.909000 | 35.9 | 10.1 | 46.0 | 10.1 | AVG | | | 0.917000 | 35.7 | 10.1 | 46.0 | 10.3 | AVG | | | 5.753000 | 17.0 | 10.3 | 50.0 | 33.0 | AVG | # Curves of conducted emission ESH2-Z5_Voltage_Class B_Custom # 5.8 Magnetic Induction of External origin 0.5mT EN50470-1 X-Ref. 7.4.12 EN50470-3 X-Ref 8.7.7.11 AC magnetic induction of external origin, produced by a coil of one metre diameter, field strength at its centre 0.5mT (400 Ampere turns) Sample No: 11809192840057 Test Procedure: EN50470-3 AC Mag Fields Test Conditions: Un:230V Fn: 50Hz Iref: 10A PF: Cos. $\phi = 1.0$ Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | Phase angle of the field with respect to U3 (Vph) | Direction of field orientation | | | Critical Change % Error Limit | | | |---|--------------------------------|---------|---------|-------------------------------|----------|---------| | | X - X | Y - Y | Z-Z | | Accuracy | | | | % Error | % Error | % Error | Class A | Class B | Class C | | No Field Applied | 0.11 | 0.10 | 0.13 | - | - | - | | 0° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 30° | 0.12 | 0.11 | 0.12 | ±3.0 | ±2.0 | ±1.0 | | 60° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 90° | 0.11 | 0.12 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 120° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 150° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 180° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 210° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 240° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 270° | 0.13 | 0.12 | 0.13 | ±3.0 | ±2.0 | ±1.0 | | 300° | 0.13 | 0.13 | 0.12 | ±3.0 | ±2.0 | ±1.0 | | 330° | 0.12 | 0.11 | 0.12 | ±3.0 | ±2.0 | ±1.0 | | 360° | 0.12 | 0.11 | 0.13 | ±3.0 | ±2.0 | ±1.0 | # 5.9 Continuous Magnetic Induction of External Origin EN50470-1 X-Ref.7.4.11 EN50470-3 X-Ref 8.7.7.10 The continuous magnetic induction was obtained using an electromagnetic coil of 1000 Ampereturns. This magnetic field was applied to all accessible surfaces of the meter samples when mounted as for normal use. Sample No: 11809192840047 Test Procedure: EN50470-3 DC Magnetic Field P Test Conditions: Un:230V Fn: 50Hz Iref: 10A PF: Cos. $\phi = 1.0$ Test Circuit: 1 phase 2 wire Measurement Mode: Active Import Energy kWh | | | Critical Change % Error Limit | | | |--------------------------|---------|-------------------------------|------|---------| | Electromagnetic Position | % Error | Accuracy | | | | | | Class A Class B Class | | Class C | | No field applied | 0.016 | - | - | - | | Left side of meter | 0.032 | ±3.0 | ±2.0 | ±1.0 | | Front of meter | 0.036 | ±3.0 | ±2.0 | ±1.0 | | Right side of meter | 0.028 | ±3.0 | ±2.0 | ±1.0 | | Top of meter | 0.030 | ±3.0 | ±2.0 | ±1.0 | | _ | | | | | #### 6 CLIMATIC INFLUENCES EN50470-1 X-Ref. 6 6.1 Dry Heat Test X-Ref. 6.3.2 Sample No: M7 Test Procedure: EN50470-1 Dry Heat The meter was tested in accordance with IEC 60068-2-2 as follows: Meter in the non-operating condition Method Bb (with gradual change of temperature) Temperature $+70^{\circ}C \pm 2^{\circ}C$ Duration of the test 72h On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions with no signs of damage or degradation in the meter's insulation properties. **6.2 Cold Test** X-Ref. 6.3.3 Sample No: M7 Test Procedure: EN50470-1 Cold The meter was tested in accordance with IEC 60068-2-1 as follows: Meter in the non-operating condition Method Ab (with gradual change of temperature) Temperature $-25^{\circ}C \pm 3^{\circ}C$ Duration of the test 72h On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions, with no signs of damage or corruption to meter register data. ### 6.3 Damp Heat Cyclic Test X-Ref. 6.3.4 Sample No: M7 Test Procedure: EN50470-1 Damp Heat The meter was tested in accordance with IEC 60068-2-30 as follows: Meter with reference voltage applied Upper Temperature of +40°C Duration of the test: 6 cycles On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions with no signs of damage or degradation in the meter's insulation properties. ### 7 MECHANICAL REQUIREMENTS EN50470-1 X-Ref. 5 7.1 Vibration Test X-Ref. 5.2.2.3 Sample No: M7 Test Procedure: EN50470-1 Vibration #### **Environmental Conditions** | Temperature | 21.5° C | |---------------------|---------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | The meter was tested in accordance with IEC 60068-2-6 as follows: Meter in the non-operating condition Test Procedure A Frequency Range of 10 Hz to 150 Hz (Transition frequency of 60 Hz) For F < 60 Hz, constant amplitude of movement 0.075 mm For F > 60 Hz, constant acceleration of 9.8 m/s 2 (1g) 10 sweep cycles per axis On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions. **7.2** Shock Test X-Ref. 5.2.2.2 | Sample No: M7 | Test Procedure: EN50470-1 Shock | |---------------|---------------------------------| | | | ### **Environmental Conditions** | Temperature | 21.5° C | |---------------------|---------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | The meter was tested in accordance with IEC 60068-2-27 as follows: Meter in the non-operating condition Half Sine Pulse Peak Acceleration of 30 gn (300 m/s²) Pulse Duration of 18 ms On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions. # 7.3 Spring Hammer Test X-Ref. 5.2.2.1 | Sample No: M7 | Test Procedure: | EN50470-1 Spring Hammer | |---------------|-----------------|-------------------------| | | | | ### **Environmental Conditions** | Temperature | 21.5° C | |---------------------|---------| | Relative Humidity | 56.0 % | | Barometric Pressure | 998 mB | The meter was tested in accordance with IEC 60068-2-75 as follows: Kinetic Energy of Spring Hammer $0.2 \text{ Nm} \pm 0.02 \text{ Nm}$ The meter case and terminal cover where acted upon all external surfaces, including the display window. After the test no damage was evident and the meter continued to function correctly. #### 7.4 Penetration of Dust & Water X-Ref. 5.9 Sample No: M7 Test Procedure: EN50470-1 Dust & Water The meter was tested in accordance with IEC 60529 as follows: Dust Test: IP5X, non-operating condition, Neither under, nor over pressure Water Test: IPX1, non-operating condition The meter is put inside the meter box On completion of the above test, the meter was found to function correctly and within the accuracy specification when subsequently operated under reference operating conditions with no signs of damage or degradation in the meter's insulation properties. ### 7.5 Resistance to Heat & Fire X-Ref. 5.8 Sample No: M7 Test Procedure: EN50470-1 Heat & Fire The meter was tested in accordance with IEC 60695-2-11 as follows: **Test:** Terminal block tested at 960°C for 30 seconds. **Result:** Flames extinguish with 30 seconds **Test:** Terminal cover and meter case tested at 650°C for 30 seconds. **Result:** Does not produce drips or flames # **ANNEX A - Photographs of Meters Under Test** # **Front of Meter Under Test** # **Side of Meter Under Test** # **Rear of Meter Under Test** ** End of Document **